
Houdini Solaris
Integration

Team members: Catherine Cheng, Jackie Li, Yifan Lu, Michael
Mason, Annie Qiu, Rain Yan, Linda Zhu, Crystal Zou

What is Houdini Solaris?

Houdini Solaris Introduction
Speedrun

- Houdini native integration with USD

- According to SideFX:
- “Suite of look-development, layout,

and lighting tools that empower

artists to create USD-based scene

graphs”

- Can access a variety of rendering

engines!

Why Solaris?

- Would be useful to have a

native integration to and from

Houdini!

- B/c Houdini is becoming more

popular to use as a tool

- Can modify asset structure

with a visual, node-based

system

Workflow

Basic Overview of Workflow: Updating Asset

Upload an existing
asset from Griddle in
the form of .usda files

Modify asset within

update template

- LODs

- Materials

Export back into
Griddle as updated
.usda files

Basic Overview of Workflow: Create New Asset

Create new asset in

local Houdini

From local source,

upload asset into

LOD references

Export into Griddle
as a new asset with
.usda files

Add or modify any

material variants

LOD0 LOD1 LOD2

New Component Asset
Structure

New Component Asset Structure

material.usda

Saving Hierarchy

wahooLOD#.usda

New Component Asset Structure

root.usdawahoo.usdaSaving Hierarchy

● All in usda format!

New Component Asset Structure

https://docs.google.com/file/d/1HQZ_hYmSVWPOzfR9OTIa6mACf1TEL653/preview

New Assembly Asset
Structure

New Assembly Asset Structure

Saving Hierarchy Assembly kind

Reference to root file in each asset

Setting up visibility, transformations
and other properties for asset relative
in this assembly

Create New Asset/Assembly

Create New Component Asset

● What users can do?

○ Create own models or import the existing obj files

○ Create new materials or change default shader settings

● What do they get?

○ Output new Component Asset with Variants

■ Geometry Set

■ Material Set

● Set models
○ Import obj or create models

Create New Component Asset

● Set Materials
○ Import texture or create own

Create New Component Asset

Create Materials Assign Materials

Create New Component Asset

● Input Name of Asset and file path

Create New Component Asset

Create New Component Asset

● What results can we expect from?

Create New Assembly
● Create and export component assets

Create New Assembly

● Create asset references nodes
○ Set the hierarchy of the

reference asset

○ Adjust the transformation of the

component assets

Create New Assembly
● Merge and export assembly assets
● File structure

Update Asset/Assembly

Update new asset

Before

After

Update old asset

Before

After

Update assembly

Before

After

Demo

https://docs.google.com/file/d/1psknLS2a7CKhDMSVNE003_TFXPCip70f/preview

LODs and Materials

LODs

- Used Polyreduce nodes to create LOD variants

Materials

- Added material variants with material

library node

- Materials are put into a variant such that

they can be selected in the setvariant

node

LODs and Materials .usda Files

https://docs.google.com/file/d/1qC0G6-PICrydMs_8qQParQcWKuWKm3T1/preview

Lighting

Lighting & Rendering
Pipeline

1. Hip file opening w/ metadata
2. USDA asset import
3. Neutral Lighting in Solaris
4. Rendering in Karma
5. Outputting to disk

Blockers

● Griddle build issues
● xForm is not boundable

Future Steps

● Reinforcing asset scale & pivot standards
● Material instancing
● Dynamic camera adjustment to asset & meter scale

measure in render
● Using the render image

Workflow Overview

1. User click on “Render in

Houdini” button

2. Houdini is launched

headlessly
a. Asset directory path

mapped to file import &

render output

b. Karma rendering is

started

3. Render image will be

generated in <20 seconds

from the XPU render

USD Import and
Conversions to
Polygons

● Automatic USDA asset import based on

asset directory name

● Convert to polygon for compatibility &

performance

Camera + Neutral
3-Point Lighting w/
Skybox in Solaris

Camera

● Telephoto perspective
○ Still the “isometric look, but more natural”

● Big F-Stop for no Depth of Field

Lighting

● HDRI
● Key light
● Top light
● Bounce

Rendering with Karma
XPU

Resolution

● 1280 by 720 (16:9)

Render Engine

● XPU (CPU + GPU)
○ 64 samples with the following setting:

Saving to Disk

Asset Resolver

What is an Asset Resolver?

● In USD, anything with the `@` around it
● By default, pxr uses file paths on disk to

resolve assets
● We can define our own by creating an asset

resolver plugin
● https://openusd.org/release/api/ar_page_fro

nt.html
● `ArResolver` and `ArAsset`

○ pxr/usd/ar/resolver.h
○ pxr/usd/ar/asset.h

https://openusd.org/release/api/ar_page_front.html
https://openusd.org/release/api/ar_page_front.html

Our Asset Resolver

Entry point to asset:

Specify asset layer/variant

Our Asset Resolver

Demo

https://docs.google.com/file/d/1taK0ZcgyToAXMhMR9__Wi0bALxZbRytq/preview

Demo (Assemblies)

https://docs.google.com/file/d/1TxAb8i_TU0VS2e_wktnLJYv45hiEw3pR/preview

Asset Resolver Further Work

● Export USD’s with custom asset

identifier

● Version pinning (latest? absolute

versions?)

● Use more robust API (define an

ArAsset + ArResolver)
○ fetch directly from our database

● Maya integration

Griddle Integration

Overview
(Component Asset)

Blue: Griddle side

Green: Python scripting

Orange: Houdini side

Create a New
Asset

Select an Existing
Asset & Turn on Sync

“Open in Houdini”

Middleware for data transfer

Edit Asset in Houdini

Save Exports to local dir

“Commit Changes”

Advantages:

● Maximally adhere to Griddle’s

workflow

● Separate database interaction

and 3D asset generation

Integration
Components

● Griddle frontend
○ UI
○ Data pre-processing

■ Asset folder location
■ Houdini template

● Python middleware
○ hou module
○ Set inputs to network parameters
○ Node executions

https://www.sidefx.com/docs/houdini/hom/hou/index.html

Houdini Command-line Scripting &
Hython

- $ houdini template.hip launchTemplate.py [optional flags to python]

This way of launching Houdini is the special command line tool that REQUIREs the user to set $HFS
system environment variable to their local houdini installation path so we can locate the specific
Houdini version and executable to run.

- $ hython script.py [optional flags to python]

Hython is a Python shell that ships with Houdini that is slightly different from the standard Python
shell. It can launch Houdini headlessly without UI so it’s perfect for the lighting template, which
contains an automation for universal lighting, to render out an image.

https://www.sidefx.com/docs/houdini/hom/commandline.html#hython

First iteration:

https://docs.google.com/file/d/1u3k8mkAKj7VA-0P8yY0XvZHPz0jPRN61/preview

https://docs.google.com/file/d/13hokxXSApT2ytitIp-fHgdz6u-NDnHDF/preview

Thank
you

Houdini is awesome. Solaris is fantastic. USD…?

